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Outline

• VAE in learning manifold dimensions 

• Extension to CVAE 

• Model design diagnoses



Manifold
• Data lies on a low-dimensional manifold, which is a mathematical object that 

can be curved but looks flat locally

A Swiss Roll
Estimates of the intrinsic dimension of commonly used datasets obtained 
using the MLE method with k = 3, 5, 10, 20 nearest neighbors[1]

[1] The Intrinsic Dimension of Images and Its Impact on Learning, Pope et al., ICLR 2021 



Latent Variable Model[1]

Observed Data: x ∈ 𝒳 ⊆ ℝd

Assumed Latent Vector: z ∈ 𝒵 ⊆ ℝκ

Each sample is  28*28=784 dim  
 is sufficientκ < 20 ≪ d = 784

 is a low-dimensional representation  
of significant factors in 

z
x

[1] The images of latent variable models part are borrowed from the slides of MIT 6.S191 and ICASSP 2019 tutorial of David Wipf. 



GAN

We need to train it via a minimax game:

min
θg

max
θd

[𝔼x∼pdata
log D(x; θd) + 𝔼z∼p(z) log(1 − D(G(z; θg); θd))]



Autoencoders

ℒ(x, ̂x) = | |x − ̂x | |2
No labels are used in the loss!

learning a lower-dimensional feature representation from unlabeled training data



Smaller latent space will force a larger training bottleneck

Dimensions of latent space  Reconstruction quality⇒



Variational Autoencoder

Variational autoencoders are a probabilistic twist on autoencoders!  
Sample from the mean and standard deviation to compute latent sample



Encoder: qϕ(z |x) Decoder: pθ(x |z)

, where  z = μz(x) + σz(x) ⋅ ε ε ∼ N(0, Iκ)

Variational Autoencoder

Data dimension  
Latent dimension  

Intrinsic dimension 

d
κ
r

Encoder  
Decoder 

N(μz(x), diag[σ2
z (x)]; ϕ)

N(μx(z), γI; θ)

A scalar



Loss

ℒ(θ, ϕ) = ∫𝒳
{−𝔼qϕ(z|x)[log pθ(x |z)] + 𝕂𝕃[qϕ(z |x) | |p(z)]}ωgt(dx)

Prior N(0, Iκ)

Given , solve  x ∼ pgt(x) min
θ

− ∫ log pθ(x)dx

Sample , compute {zi}m
i=1 ∼ N(0, I) ∫ pθ(x |z)N(0,I)dz ≈

1
m

m

∑
i=1

pθ(x |zi)

Goal

A naive approximation

In this case, for most , zi ∼ N(0, I) pθ(x |zi) = 0

Use the variational upper bound  (ELBO)ℒ



When the decoder variance  is trainableγ

[2] Diagnosing and Enhancing VAE Models, Dai & Wipf, 2019

 goes to zero when the VAE model reaches its optimum[2] γ

We observed there are two behaviors of encoder variance  in different dimensions:σ2
z (x)

2. , informative σ2
z (x) → 0

*Reconstructions as we change 
latent code along this dimension

1. , unnecessary σ2
z (x) → 1

Why would that happen? 
How many informative dimensions there are?



Loss

2ℒ(θ, ϕ) = 2∫𝒳
{−𝔼qϕ(z|x)[log pθ(x |z)] + 𝕂𝕃[qϕ(z |x) | |p(z)]}ωgt(dx)

Reconstruction Regularizer

Remind that  and  are Gaussian qϕ(z |x) pθ(x |z)

= ∫𝒳
{log(2πγ) +

1
γ

𝔼qϕ(z|x)( | |x − μx(z) | |2 ) + 2𝕂𝕃[qϕ(z |x) | |p(z)]}ωgt(dx)

We want  to reconstruct . This expectation will go to zero. μx(z) x
In our paper,  is a 

trainable scalar!
γ

 will also go to zero.γ

We want   at a higher rate than . Otherwise  will go infinity.| |x − μx(z) | |2 → 0 γ → 0 ℒ

How about the KL term?



KL term

∫𝒳
{log(2πγ) +

1
γ

𝔼qϕ(z|x)( | |x − μx(z) | |2 ) + 2𝕂𝕃[qϕ(z |x) | |p(z)]}ωgt(dx)

= μz(x)′ μz(x) + tr(σ2
z (x)) − κ − log( |σ2

z (x) | )
Leave out the terms which will not get 

 unbounded values when ,  
since   for informative dimensions

γ → 0
lim
γ→0

σ2
z (x)

= − log( |σ2
z (x) | ) + O(1)

To perfectly reconstruct  which is a -dimensional manifold, we need  dimensions of information.  
We assume the first  dimensions of  are used for the decoder to do reconstruction. 

x r r
r z



Reconstruction Term
Assume the mean function  is -Lipschitz continuous, we can get an upper bound of the norm μz(x; ϕ) L

𝔼z∼qϕγ(z|x)[ | |x − μx(z) | |2 ] = 𝔼z∼qϕγ(z|x)[ | |x − μx(z)1:r | |2 ] ≤ 𝔼ε∼N(0,I)[ | |Lσz(x)1:rε | |2 ] , where ε ∼ N(0,I)

ℒ̃ = ∫𝒳
{log(2πγ) +

1
γ

𝔼ε∼N(0,I)[ | |Lσz(x)1:rε | |2 ] − log( |σ2
z (x)1:r | ) − log( |σ2

z (x)r+1:κ | ) + O(1)}ωgt(dx)

The upper bound of :ℒ

By taking the derivatives of  and  respectively, a relation showsσ2
z (x) γ

σ*z (x)2
1:r = γ

I
L2

 goes to zero when the VAE model reaches its optimum γ

At least  dimensions of  goes to zero at optimumr σ2
z (x)



Density plots of  latent variable z

Intuitively: why  should be small for  dimensions?σ2
z (x) r

 and  are Lipschitz continuous μz(x) μx(z)

z

qϕ(z |x1) qϕ(z |x2)



KL term
Assume we have  dimensions of  goes to zero with , i.e. , where  ̂r σ2

z (x) γ σ2
z (x)1: ̂r = O(γ) ̂r ≥ r

If we do not constrain , these dimensions will try to match the prior’s variance, i.e. 1σ2
z (x)r+1: ̂r

𝕂𝕃(qϕ(z |x) | |p(z)) = − log( |σ2
z (x)1:r | )− log( |σ2

z (x)r+1: ̂r | ) −log( |σ2
z (x) ̂r+1:κ | ) + O(1)

To minimize ,  when model convergesℒ(ϕ, θ) ̂r = r

Remind that , we have the final form of the KL term isσ*z (x)2
1:r = γ

I
L2

−r log(γ) + O(1)



Loss (continued)

−𝔼z∼qϕ(z|x)[log pθ(x |z)] + 𝕂𝕃(qϕ(z |x) | |p(z)) An additional coefficient   
is added for KL term in -VAE

β
β

=
1
2γ

𝔼qϕ(z|x) | |x − μx(z) | |2 + =

= (d − r)log(γ) + O(1)

1
2

d log(2πγ) −
1
2

r log(γ) +O(1)



Active Dimensions
The dimensions of  that are used for reconstruction.  

Such   will go to zero when the model reaches its optimality!

σ2
z (x)

σ2
z (x)

r

κ − r

σ2
z (x)1:r = O(γ)

Reconstruction

σ2
z (x)r+1:κ = O(1)

KL term



Results of VAE models

Visual of  with σ2
z (x) κ = 20, d = 30, r = 6



Extend to Conditional VAE
Add a conditioning variable  with  effective dimensions 

Such  can help to reconstruct at most  dimensions

c t

c t
r − t

t

κ − r

Reconstruction

KL term

Conditioning Variable

qϕ(z |x, c) = N(μz(x, c; ϕ), σ2
z (x, c; ϕ))

𝕂𝕃(qϕ(z |x, c) | |p(z |c))

Encoder

N(z |μz, σ2
z )

Decoder
N(x |μx, γI)

1
γ

𝔼z∼qϕ(z|x,c)[ | |x − μx(z, c) | |2 ]

x
μx(z, c)

z

c c



How does the CVAE model use ?c
−𝔼z∼qϕ(z|x,c)[log pθ(x |z, c)] + 𝕂𝕃(qϕ(z |x, c) | |p(z |c))

=
1
2

d log(2πγ) +
1
2γ

𝔼qϕ(z|x,c) | |x − μx(z, c) | |2 = −
1
2

(r − t)log γ + constant

If  only shows in the encoderc

r

κ − r

If  only shows in the decoderc

r − t

t

κ − r

If  only shows in the priorc

r

κ − r

σ2
z → 0

σ2
z = O(1)

σ2
z → 0

σ2
z = O(1)

The encoder and prior will not use  when the model reaches its optimumc

?



How about optimal loss?

VAE

CVAE (d − r + t)log γ + O(1)

(d − r)log γ + O(1)

 is not in the loss formula 
because the “redundant” part 
can be cancelled by matching 
prior! 

κ

r − t

t

κ − r

κ − r

r
Reconstruction

KL term

Conditioning variable



Experiment results

r = 10

 on MNIST dataset.   and the number of active dimensions is 12σ2
z (x, c) κ = 32



When data lies on a union of manifolds
Each manifold is with a locally-defined value of r

Case 1:  is a discrete variable indicating different manifolds, then the manifold 
dimension itself may vary conditioned on the value of  in a single model.

c
c

A union of 5 manifolds with 
.  

A discrete c labels indicates each manifold/class
r = {1,2,3,4,5}, d = 20, κ = 40



A continuous  associated with  
 .

c t ∈ {2,4,6,8,10}
r = 12, d = 20, κ = 90

Case 2:  is a continuous variable.  varies for different values of , i.e. 
different value can help to reconstruct  dimensions of the manifold.

c t c
t



Some diagnoses of CVAE models
1. Encoder/prior model weights sharing in sequence models

pθ(zl |x<l) = qϕ(zl |x<l) = qϕ(zl |x≤l−1)

xl−1 xl

The encoder at time l − 1 The prior at time l



2. Initial  is significant to model convergenceγ

d = 20, r = 10, t = 5, κ = 20

3. Equivalence of conditional and unconditional priors

Prior: p(z |c) = N(μp(c), σ2
p(c)) p′ (z) = N(0,I)

Decoder: pθ(x |z, c) p′ (x |z′ , c) = pθ(x |z′ * σp(c) + μp(c), c)



Application: outlier screening



Some take-home messages
• A trainable  as decoder variance is preferred 

• At global optimality, the encoder variance has some dimensions goes to zero. These 
dimensions show the number of manifold dimensions. 

• Given a trainable , a near zero KL term is not a signal for good convergence 

• Conditional VAE can learn a union of manifold dimensions  

• A good initial  can help the start of the training process 

• Weight sharing between the prior and posterior compromises performance of sequential 
modeling   

• A conditioned prior is not necessary

γ

γ

γ


