Learning Manifold Dimensions with Conditional Variational Autoencoders

Yijia Zheng Tong He Yixuan Qiu David Wipf

Purdue/AWS

AWS

SUFE

AWS

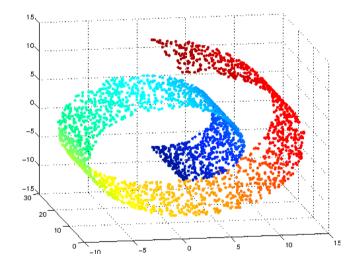
March 2023

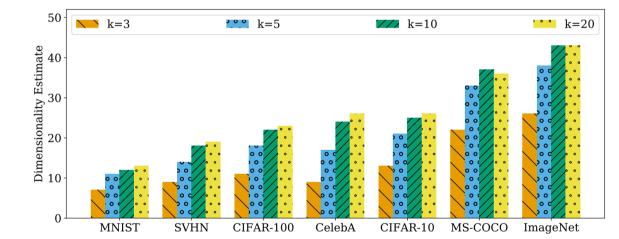
Outline

- VAE in learning manifold dimensions
- Extension to CVAE
- Model design diagnoses

Manifold

• **Data** lies on a low-dimensional manifold, which is a mathematical object that can be curved but looks flat locally





A Swiss Roll

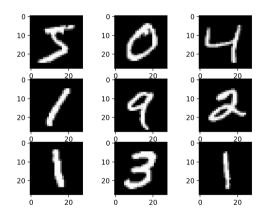
Estimates of the intrinsic dimension of commonly used datasets obtained using the MLE method with k = 3, 5, 10, 20 nearest neighbors^[1]

[1] The Intrinsic Dimension of Images and Its Impact on Learning, Pope et al., ICLR 2021

Latent Variable Model^[1]

Observed Data: $x \in \mathcal{X} \subseteq \mathbb{R}^d$

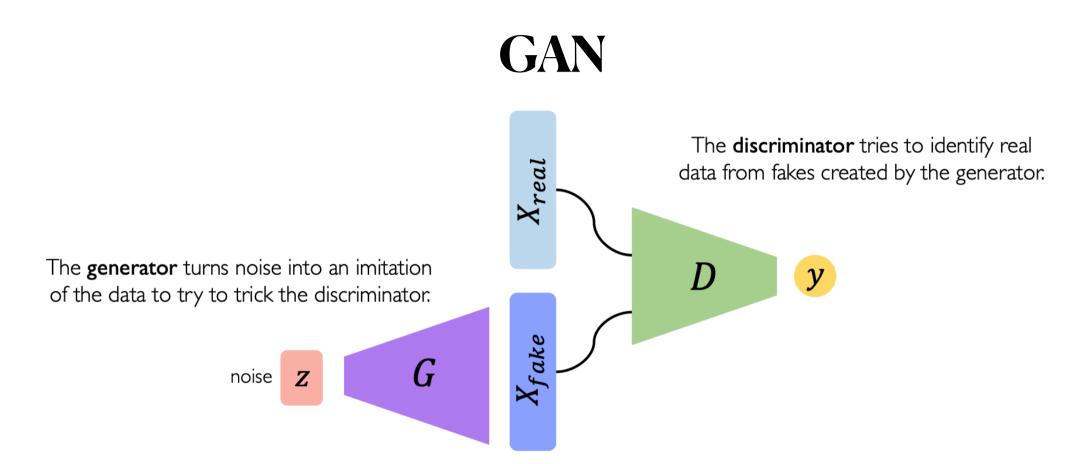
Assumed Latent Vector: $z \in \mathscr{Z} \subseteq \mathbb{R}^{\kappa}$



Each sample is 28*28=784 dim $\kappa < 20 \ll d = 784$ is sufficient

z is a low-dimensional representation of significant factors in *x*

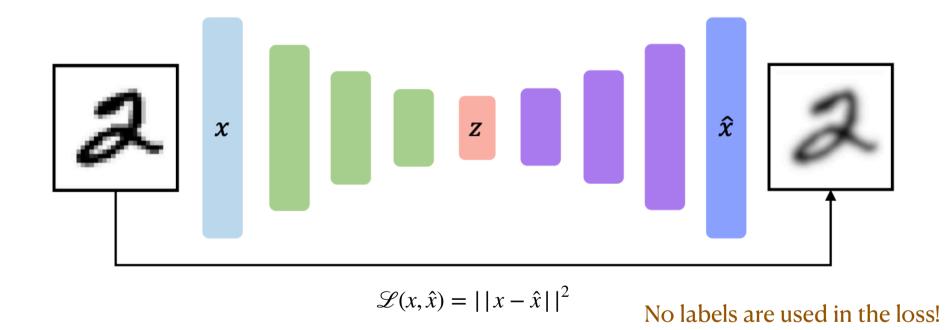
[1] The images of latent variable models part are borrowed from the slides of MIT 6.S191 and ICASSP 2019 tutorial of David Wipf.



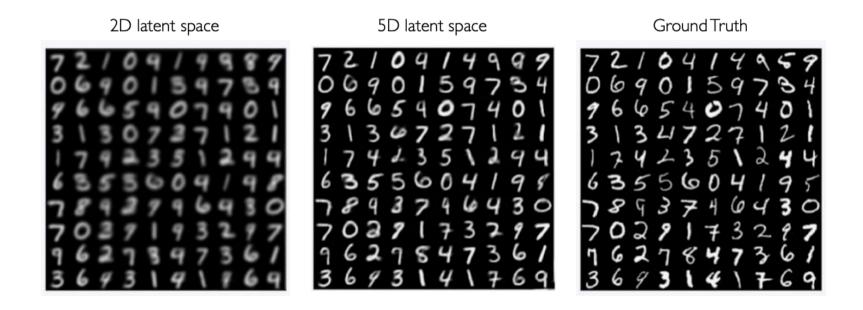
We need to train it via a minimax game:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D(x; \theta_d) + \mathbb{E}_{z \sim p(z)} \log(1 - D(G(z; \theta_g); \theta_d)) \right]$$

Autoencoders



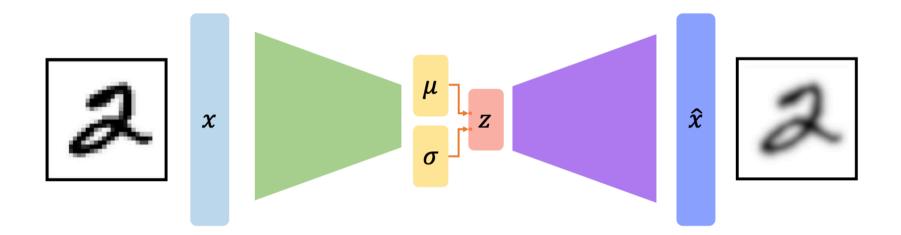
learning a lower-dimensional feature representation from unlabeled training data



Dimensions of latent space \Rightarrow Reconstruction quality

Smaller latent space will force a larger training bottleneck

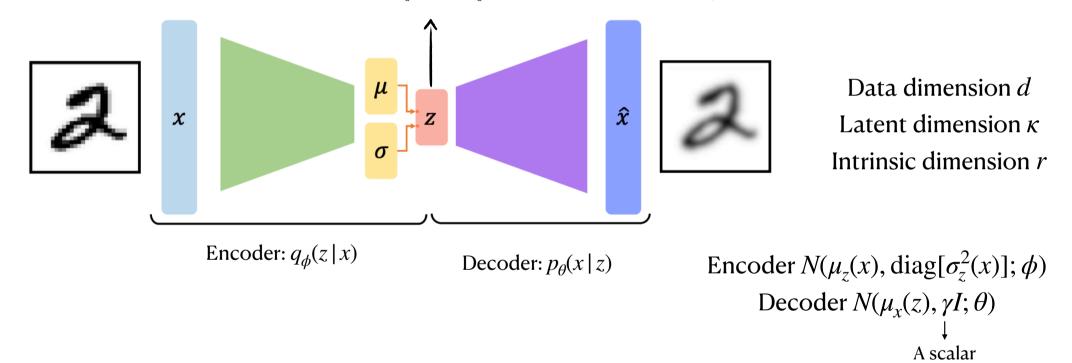
Variational Autoencoder



Variational autoencoders are a probabilistic twist on autoencoders! Sample from the mean and standard deviation to compute latent sample

Variational Autoencoder

 $z = \mu_z(x) + \sigma_z(x) \cdot \varepsilon$, where $\varepsilon \sim N(0, I_{\kappa})$



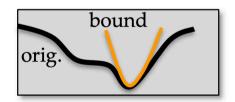
Loss

Goal Given
$$x \sim p_{gt}(x)$$
, solve $\min_{\theta} - \int \log p_{\theta}(x) dx$

A naive approximation

Sample
$$\{z^i\}_{i=1}^m \sim N(0, I)$$
, compute $\int p_{\theta}(x \mid z) N(0, I) dz \approx \frac{1}{m} \sum_{i=1}^m p_{\theta}(x \mid z^i)$

In this case, for most $z^i \sim N(0, I)$, $p_{\theta}(x | z^i) = 0$



Use the variational upper bound ${\mathscr L}$ (ELBO)

$$\mathscr{L}(\theta,\phi) = \int_{\mathscr{X}} \{-\mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] + \mathbb{KL}[q_{\phi}(z|x)||p(z)]\}\omega_{gt}(dx)$$

$$\downarrow$$
Prior $N(0, I_{\kappa})$

When the decoder variance γ is trainable

 γ goes to zero when the VAE model reaches its optimum^[2]

We observed there are two behaviors of encoder variance $\sigma_z^2(x)$ in different dimensions:

1. $\sigma_z^2(x) \rightarrow 1$, unnecessary

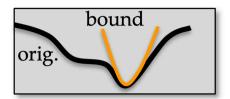
**Reconstructions as we change latent code along this dimension*


```
2. \sigma_z^2(x) \rightarrow 0, informative
```

Why would that happen? How many informative dimensions there are?

[2] Diagnosing and Enhancing VAE Models, Dai & Wipf, 2019

Loss



$$\begin{aligned} & \text{Reconstruction} \quad \text{Regularizer} \\ & \uparrow \\ 2\mathscr{L}(\theta, \phi) = 2 \int_{\mathscr{X}} \{ -\mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] + \mathbb{KL}[q_{\phi}(z|x) | | p(z)] \} \omega_{gt}(dx) \quad \text{Remind that } q_{\phi}(z|x) \text{ and } p_{\theta}(x|z) \text{ are Gaussian} \\ & = \int_{\mathscr{X}} \{ \log(2\pi\gamma) + \frac{1}{\gamma} \underbrace{\mathbb{E}_{q_{\phi}(z|x)}(||x - \mu_{x}(z)||^{2})}_{\Psi} + 2\mathbb{KL}[q_{\phi}(z|x) | | p(z)] \} \omega_{gt}(dx) \end{aligned}$$

We want $\mu_x(z)$ to reconstruct *x*. This expectation will go to zero.

 γ will also go to zero.

In our paper, γ is a trainable scalar!

We want $||x - \mu_x(z)||^2 \to 0$ at a higher rate than $\gamma \to 0$. Otherwise \mathscr{L} will go infinity.

How about the KL term?

KL term

$$\int_{\mathcal{X}} \{ \log(2\pi\gamma) + \frac{1}{\gamma} \mathbb{E}_{q_{\phi}(z|x)}(||x - \mu_{x}(z)||^{2}) + 2\mathbb{KL}[q_{\phi}(z|x)||p(z)] \} \omega_{gt}(dx)$$

$$= \mu_{z}(x)'\mu_{z}(x) + tr(\sigma_{z}^{2}(x)) - \kappa - \log(|\sigma_{z}^{2}(x)|)$$

$$= -\log(|\sigma_{z}^{2}(x)|) + O(1)$$
Leave out the terms which will not get unbounded values when $\gamma \to 0$, since $\lim_{\gamma \to 0} \sigma_{z}^{2}(x)$ for informative dimensions

To perfectly reconstruct *x* which is a *r*-dimensional manifold, we need *r* **dimensions of information**. We assume the first *r* dimensions of *z* are used for the decoder to do reconstruction.

Reconstruction Term

Assume the mean function $\mu_z(x; \phi)$ is *L*-Lipschitz continuous, we can get an upper bound of the norm

$$\mathbb{E}_{z \sim q_{\phi_{\gamma}}(z|x)}[||x - \mu_{x}(z)||^{2}] = \mathbb{E}_{z \sim q_{\phi_{\gamma}}(z|x)}[||x - \mu_{x}(z)_{1:r}||^{2}] \leq \mathbb{E}_{\varepsilon \sim N(0,I)}[||L\sigma_{z}(x)_{1:r}\varepsilon||^{2}], \text{ where } \varepsilon \sim N(0,I)$$

The upper bound of \mathscr{L} :

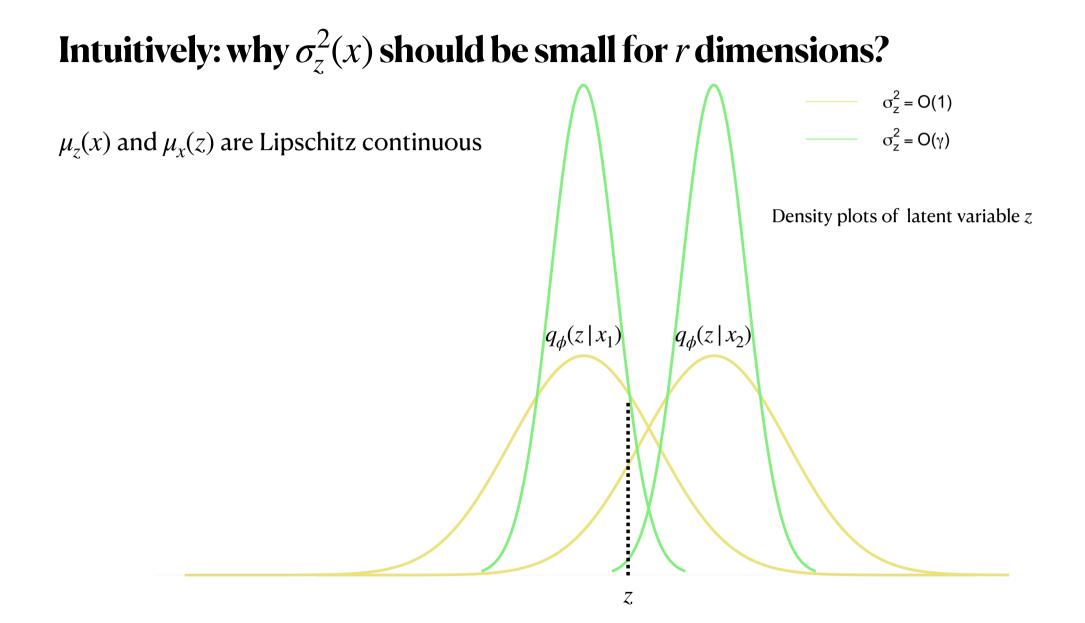
$$\tilde{\mathscr{L}} = \int_{\mathscr{X}} \{ \log(2\pi\gamma) + \frac{1}{\gamma} \mathbb{E}_{\varepsilon \sim N(0,I)}[| | L\sigma_{z}(x)_{1:r}\varepsilon | |^{2}] - \log(|\sigma_{z}^{2}(x)_{1:r}|) - \log(|\sigma_{z}^{2}(x)_{r+1:\kappa}|) + O(1) \} \omega_{gt}(dx)$$

By taking the derivatives of $\sigma_z^2(x)$ and γ respectively, a relation shows

$$\sigma_z^*(x)_{1:r}^2 = \gamma \frac{I}{L^2}$$

 γ goes to zero when the VAE model reaches its optimum

At least *r* dimensions of $\sigma_z^2(x)$ goes to zero at optimum



KL term

Assume we have \hat{r} dimensions of $\sigma_z^2(x)$ goes to zero with γ , i.e. $\sigma_z^2(x)_{1:\hat{r}} = O(\gamma)$, where $\hat{r} \ge r$

 $\mathbb{KL}(q_{\phi}(z \mid x) \mid | p(z)) = -\log(|\sigma_{z}^{2}(x)_{1:r}|) - \log(|\sigma_{z}^{2}(x)_{r+1:\hat{r}}|) - \log(|\sigma_{z}^{2}(x)_{\hat{r}+1:\kappa}|) + O(1)$

If we do not constrain $\sigma_z^2(x)_{r+1:\hat{r}}$, these dimensions will try to match the prior's variance, i.e. 1

To minimize $\mathscr{L}(\phi, \theta)$, $\hat{r} = r$ when model converges

Remind that $\sigma_z^*(x)_{1:r}^2 = \gamma \frac{I}{L^2}$, we have the final form of the KL term is $-r \log(\gamma) + O(1)$

Loss (continued)

$$-\mathbb{E}_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] + \mathbb{KL}(q_{\phi}(z|x)||p(z)) \rightarrow \text{An additional coefficient } \beta \text{ is added for KL term in } \beta\text{-VAE}$$

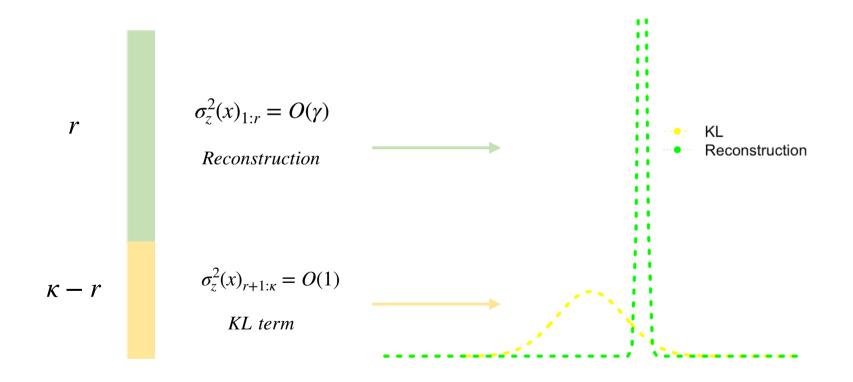
$$= \frac{1}{2\gamma} \mathbb{E}_{q_{\phi}(z|x)}||x - \mu_{x}(z)||^{2} + \frac{1}{2}d\log(2\pi\gamma) = -\frac{1}{2}r\log(\gamma) + O(1)$$

 $= (d - r)\log(\gamma) + O(1)$

Active Dimensions

The dimensions of $\sigma_z^2(x)$ that are used for reconstruction.

Such $\sigma_z^2(x)$ will go to **zero** when the model reaches its optimality!



κ	d	r	AD	Recon	\mathbb{KL}	γ	-ELBO
		2	2	3×10^{-4}	18.31	1.625×10^{-5}	-58.26
		4	4	2.6×10^{-3}	24.22	5.654×10^{-5}	-29.83
	10	6	6	9.2×10^{-3}	24.14	3×10^{-4}	-17.39
		8	7	1.27×10^{-2}	27.91	1.4×10^{-3}	-10.38
		10	8	5.99×10^{-2}	16.39	2.5×10^{-3}	-6.40
		2	2	1.6×10^{-3}	17.98	5.052×10^{-5}	-114.52
• •		4	4	1.75×10^{-2}	23.11	$2{ imes}10^{-4}$	-60.90
20	20	6	6	3.09×10^{-2}	28.96	6×10^{-4}	-43.75
		8	8	3.42×10^{-2}	33.83	1.2×10^{-3}	-36.82
		10	10	4.74×10^{-2}	35.81	1.1×10^{-3}	-28.34
		2	2	2.6×10^{-3}	18.42	7.221×10^{-5}	-176.74
		4	4	2.73×10^{-2}	24.60	$2{ imes}10^{-4}$	-100.28
	30	6	6	4.74×10^{-2}	31.89	9×10^{-4}	-76.46
		8	8	5.68×10^{-2}	37.28	1.6×10^{-3}	-65.66
		10	10	1.13×10^{-1}	35.13	2.5×10^{-3}	-47.00
		6	5	1.299×10^{-1}	22.53	2.1×10^{-3}	-36.97
5	20	8	5	3.719×10^{-1}	16.618	8.8×10^{-3}	-22.60
		10	5	3.564×10^{-1}	15.966	1.113×10^{-2}	-16.96

Results of VAE models

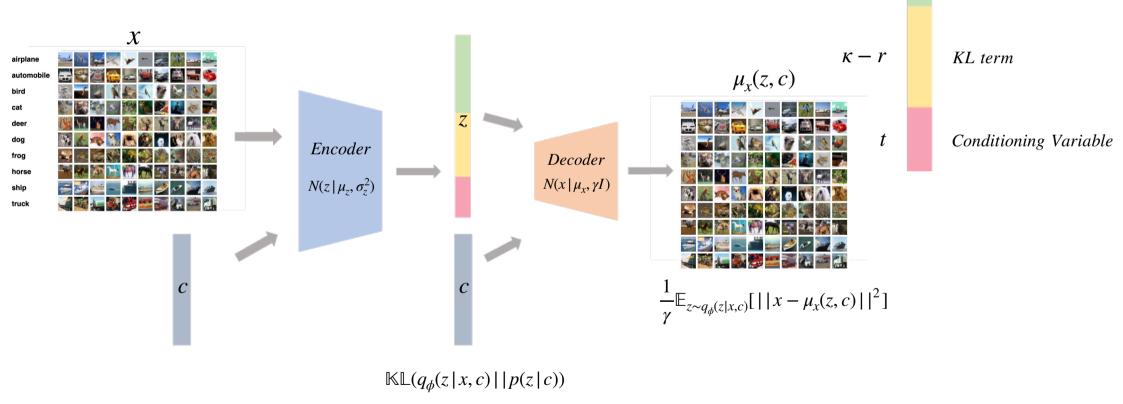
0.0080	0.0018	1.0000	1.0000	1.0000
0.0027	0.0031	1.0000	1.0000	1.0000
1.0000	0.0087	1.0000	0.0141	1.0000
1.0000	1.0000	1.0000	1.0000	1.0000

Visual of $\sigma_z^2(x)$ with $\kappa = 20$, d = 30, r = 6

Extend to Conditional VAE

Add a **conditioning variable** *c* with *t* effective dimensions

Such *c* can help to reconstruct at most *t* dimensions

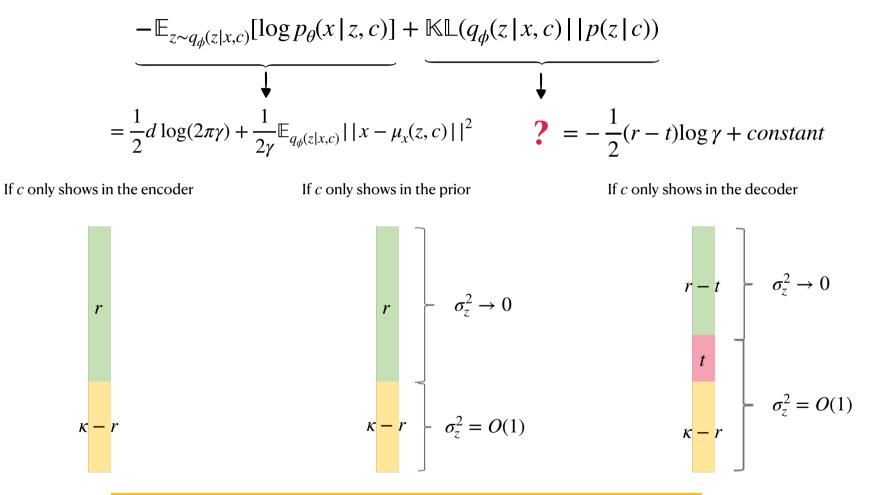


r-t

Reconstruction

 $q_{\phi}(z \mid x, c) = N(\mu_z(x, c; \phi), \sigma_z^2(x, c; \phi))$

How does the CVAE model use c?



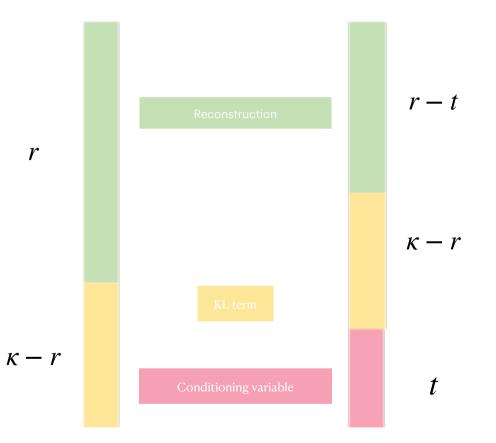
The encoder and prior will not use c when the model reaches its optimum

How about optimal loss?

VAE $(d-r)\log\gamma + O(1)$

CVAE $(d - r + t)\log \gamma + O(1)$

κ is not in the loss formula because the "redundant" part can be cancelled by matching prior!



Experiment results

t	-ELBO	Recon	\mathbb{KL}	γ	AD
1	-31.41	4.61×10^{-2}	33.26	2.4×10^{-3}	9
3	-36.67	4.66×10^{-2}	27.78	2.4×10^{-3}	7
5	-42.78	4.86×10^{-2}	20.81	2.6×10^{-3}	5
7	-52.39	4.29×10^{-2}	13.72	2.2×10^{-3}	3
9	-62.25	3.84×10^{-2}	6.07	2×10^{-3}	1

r = 10

3.6159e-03	9.6320e-01	7.6566e-04	3.5173e-04
9.8518e-01	9.6739e-01	9.6077e-01	8.1020e-04
9.8065e-01	9.7336e-01	3.7781e-03	7.1394e-04
9.6985e-01	6.1294e-03	9.7449e-01	9.8012e-01
7.8233e-04	9.7318e-01	9.8596e-01	2.4359e-04
9.7785e-01	9.7737e-01	9.7315e-01	9.8431e-01
9.2616e-01	9.8335e-01	9.6775e-01	1.2756e-03
1.0324e-03	9.6723e-01	9.6046e-01	2.1289e-03

 $\sigma_z^2(x, c)$ on MNIST dataset. $\kappa = 32$ and the number of active dimensions is 12

When data lies on a union of manifolds

Each manifold is with a locally-defined value of r

Case 1: *c* is a discrete variable indicating different manifolds, then the manifold dimension itself may vary conditioned on the value of *c* in a single model.

r	AD with attention	-ELBO with attention
1	1	-114.22
2	2	-99.81
3	3	-74.28
4	4	-50.36
5	5	-59.25

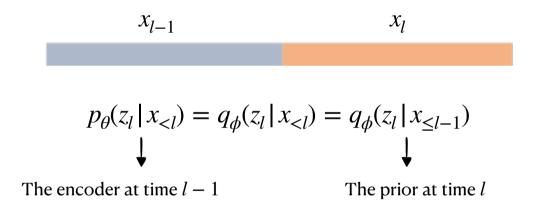
A union of 5 manifolds with $r = \{1,2,3,4,5\}, d = 20, \kappa = 40.$ A discrete c labels indicates each manifold/class Case 2: *c* is a continuous variable. *t* varies for different values of *c*, i.e. different value can help to reconstruct *t* dimensions of the manifold.

t	True AD	AD with attention	-ELBO with attention
2	10	10	-41.49
4	8	8	-20.52
6	6	6	-73.26
8	4	4	-80.64
10	2	2	-55.14

A continuous *c* associated with $t \in \{2,4,6,8,10\}$ $r = 12, d = 20, \kappa = 90.$

Some diagnoses of CVAE models

1. Encoder/prior model weights sharing in sequence models



Shared Weights	-ELBO	Recon	KL	γ
True	-2.49	0.374	18.09	0.012
False	-45.015	1.81×10^{-5}	175.99	7.252×10^{-7}

Init $\log \gamma$	VAE		CVAE $p(z)$		CVAE $p_{\theta}(z c)$	
	AD	-ELBO	AD	-ELBO	AD	-ELBO
-20	10	-28.39	5	-41.20	5	-40.72
-10	9	-28.57	5	-44.53	5	-45.25
0	8	-27.56	5	-44.38	5	-45.2
10	3	-13.89	5	-43.72	5	-43.66
20	1	-1.7	5	-45.22	4	-37.85

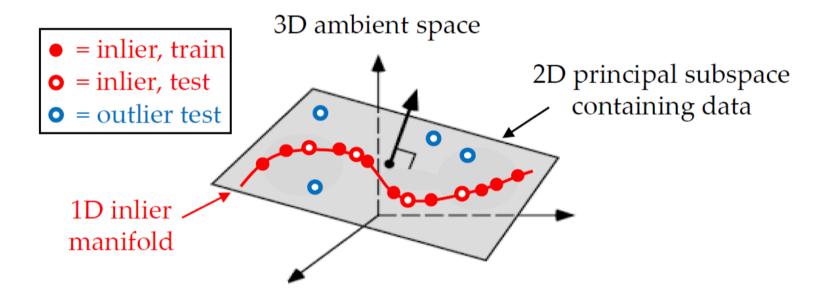
2. Initial γ is significant to model convergence

$$d = 20, r = 10, t = 5, \kappa = 20$$

3. Equivalence of conditional and unconditional priors

Prior:
$$p(z \mid c) = N(\mu_p(c), \sigma_p^2(c))$$
 \longrightarrow $p'(z) = N(0,I)$
Decoder: $p_{\theta}(x \mid z, c)$ \longrightarrow $p'(x \mid z', c) = p_{\theta}(x \mid z' * \sigma_p(c) + \mu_p(c), c)$

Application: outlier screening



Some take-home messages

- A trainable γ as decoder variance is preferred
- At global optimality, the encoder variance has some dimensions goes to zero. These dimensions show the number of manifold dimensions.
- Given a trainable γ , a near zero KL term is not a signal for good convergence
- Conditional VAE can learn a union of manifold dimensions
- A good initial γ can help the start of the training process
- Weight sharing between the prior and posterior compromises performance of sequential modeling
- A conditioned prior is not necessary